La glucosa es clave en la obesidad y la diabetes

Los az√ļcares refinados aumentan los niveles de glucosa en nuestro torrente sangu√≠neo.

Cuando comemos un pedazo de pan o un simple caramelo y vemos qu√© ocurre en nuestra sangre resulta que, a los pocos minutos, nuestros niveles de glucosa (com√ļnmente denominada ‚Äúaz√ļcar‚ÄĚ) han subido.

¬ŅQu√© es lo que ha ocurrido mientras?

Acompa√Īemos a la comida en su recorrido para averiguarlo.

A los pocos minutos de tragarnos ese pedazo de pan, éste llega ya digerido (por el estómago) al intestino delgado; Las células intestinales absorben los nutrientes que contenía, entre los que se encuentra la glucosa, y dado que estas células están en contacto directo con el sistema circulatorio, inmediatamente se vierten a la sangre y se dirigen al hígado. Como consecuencia la concentración sanguínea de glucosa (glucemia) se dispara.

La glucosa es clave en la obesidad y la diabetes

En ayunas, el nivel normal de az√ļcar en sangre es de 70 a 110 miligramos por decilitros (mg/dl). Despu√©s de las comidas, estos valores suben.

Lo que viene a continuaci√≥n es f√°cil de deducir. La sangre transporta la glucosa hacia los √≥rganos que la necesitan como ‚Äúcombustible‚ÄĚ.
De este modo, pueden obtener la energía necesaria (ATP) para llevar a cabo todas sus funcione; l problema surge cuando un exceso o un déficit de glucosa en el organismo conduce al desarrollo de patologías, de ahí la importancia de mantener su equilibrio. Es el yin y el yang de la glucosa.

El hígado y el páncreas controlan el suministro

Las células requieren un suministro permanente de glucosa para realizar sus funciones vitales. Sin embargo, su aporte es discontinuo, limitado a las comidas.

El cerebro es sensible a la cantidad de glucosa (az√ļcar) que recibe. Tanto los niveles altos de az√ļcar en la sangre como los bajos pueden da√Īar los vasos sangu√≠neos del cerebro.

Existen detectores celulares en distintos órganos (hígado, páncreas e hipotálamo, entre otros) que vigilan la disponibilidad de glucosa.

El papel del hígado

Cuando es alta (por ejemplo, inmediatamente despu√©s de comer), el h√≠gado puede almacenar parte en forma de gluc√≥geno para ¬ędespu√©s¬ę, esto es, para cuando la glucosa escasee.

Como ocurre durante el ayuno entre comidas o mientras dormimos.

Entonces lo degrada y vuelve a obtener glucosa, que es liberada a la sangre para ser utilizada por otros órganos.

No acaba ah√≠ su misi√≥n. El h√≠gado tambi√©n convierte el exceso de az√ļcares en triglic√©ridos (grasa) y promueve su almacenaje en el tejido adiposo como reserva energ√©tica.

En momentos de ayuno prolongado, estos triglicéridos son hidrolizados y convertidos en ácidos grasos, que viajan donde se les necesita a través de la sangre para ser oxidados o degradados por las mitocondrias de las células y así producir energía.

La insulina es la hormona que produce el p√°ncreas y que permite a nuestro cuerpo absorber la glucosa.

El pancreas, clave del proceso

Por su parte, el páncreas juega un papel importantísimo en el equilibrio de los niveles de glucosa; Se ocupa de detectar el exceso o déficit de glucosa, y responde en consecuencia fabricando y secretando hormonas que intentan restaurar el equilibrio.

La m√°s conocida de estas hormonas es la insulina, que se libera a la sangre cuando sube la glucemia y manda una orden contundente a las c√©lulas: ‚Äúcaptad glucosa sangu√≠nea, que hay demasiada, y gastadla o almacenadla‚ÄĚ. Como consecuencia, el az√ļcar en sangre disminuye.

Hambre, saciedad y obesidad

Entretanto, en el cerebro, el hipotálamo permanece ojo avizor a los niveles de glucosa; Este área del cerebro tiene asignada la importante misión de regular la ingesta controlando las sensaciones de hambre y saciedad.

Despu√©s de comer, su mensaje es: ‚Äúhay mucha glucosa, as√≠ que necesitamos parar de comer; voy a activar la se√Īal de saciedad‚ÄĚ.

¬ŅCu√°les son las consecuencias de obesidad? Presi√≥n arterial alta (hipertensi√≥n) Colesterol LDL alto, colesterol HDL bajo o niveles altos de triglic√©ridos (dislipidemia) Diabetes tipo 2. Enfermedad coronaria.

La insulina es la hormona que produce el p√°ncreas y que permite a nuestro cuerpo absorber la glucosa.

A la vista de todo lo que hemos expuesto, es f√°cil deducir lo que ocurre si ingerimos m√°s comida (nutrientes) de la que ‚Äúquemamos‚ÄĚ (gasto energ√©tico), el equilibrio se descompensa, retiramos hasta donde podemos la glucosa sobrante de la circulaci√≥n y fabricamos grasa.

La consecuencia inmediata es que desarrollamos sobrepeso. Y, si la situación se mantiene, obesidad. En ocasiones, el equilibro se puede descompensar porque alguno de los pasos que hemos explicado está alterado.

Por otro lado, si los niveles de glucosa en sangre se mantienen altos incluso en periodos de ayuno (hiperglucemia), hablaremos de la existencia de diabetes.

 

Dos elementos clave

Existen dos puntos clave a nivel molecular para controlar el desarrollo de obesidad o de diabetes. La incorporación de comida procesada ha contribuido al aumento de la obesidad.

De un lado los sensores, esto es, dispositivos moleculares que se encuentran en las células que detectan los niveles de glucosa o el estado energético de la célula (niveles de ATP), respectivamente. Ejemplos de éstos son las proteínas glucoquinasa (GCK), el transportador de glucosa 2 (GLUT2), la quinasa activada por AMP (AMPK), la quinasa con dominios PAS (PASK) o la diana de rapamicina en células de mamífero (mTOR).

De otro lado, debe generarse una correcta respuesta a la insulina, es decir, que las células sean capaces de identificar y responder a esta hormona adecuadamente. De que respondamos adecuadamente a la insulina se encargan una serie de receptores de la membrana de las células, así como un conjunto de proteínas intracelulares (IR, IRS, PI3K, AKT, etc).

Si el mecanismo falla en alg√ļn punto, las c√©lulas no responden a la insulina, y el az√ļcar sangu√≠neo sobrante no se elimina; Es lo que se conoce como resistencia a la insulina.

La consecuencia es que la glucosa en sangre permanece alta y se desarrolla diabetes (diabetes tipo 2).

Diabetes tipo 2, compa√Īera de la vejez

A lo largo de los a√Īos, las c√©lulas envejecen, los mecanismos moleculares de respuesta a la insulina se deterioran y van perdiendo su funcionalidad, por lo que es frecuente desarrollar resistencia a la insulina y diabetes tipo 2, por eso es una enfermedad habitual de la tercera edad.

Incluso se puede adelantar en personas obesas. En estos casos, lo que sucede es que el tejido adiposo, obligado a almacenar un exceso de grasa por encima de su capacidad, est√° hipertrofiado y alterado.

Como consecuencia, la respuesta a la insulina se ve mermada.

El bajo precio de la comida poco saludable está vinculado a un mayor riesgo de obesidad en la población de bajos recursos.

1 de cada 4 personas mayores padece diabetes tipo 2.

Para colmo, los tejidos son menos eficientes captando y gastando glucosa, lo que conduce a un aumento del az√ļcar en sangre (hiperglucemia) y, en consecuencia, diabetes tipo 2.

Es m√°s, seg√ļn la Sociedad Espa√Īola de Geriatr√≠a y Gerontolog√≠a el 40% de personas mayores de 65 a√Īos padecen diabetes (2,12 millones).

Esto supone un problema de salud grave dadas las numerosas complicaciones asociadas a esta enfermedad: problemas cardiovasculares, retinopatía diabética, nefropatías, neuropatía diabética, etc.

Investigación para el futuro

Por ejemplo, cada a√Īo aparecen alrededor de 386.000 nuevos casos de diabetes en la poblaci√≥n adulta espa√Īola.

De ah√≠ la importancia de llevar a cabo estudios encaminados tanto a conocer sus mecanismos moleculares como a dise√Īar f√°rmacos dirigidos a controlar los sensores de glucosa y nutrientes.

A eso precisamente lleva a√Īos dedic√°ndose nuestro grupo de investigaci√≥n, en la Universidad Complutense.

Concretamente estudiamos sensores y nutrientes a nivel del hipotálamo, el hígado y el tejido adiposo que ayuden a atajar una enfermedad responsable de una gran mortalidad y morbilidad en el mundo.

En los tiempos actuales, se ha a√Īadido una nueva enfermedad infecciosa que, cuando afecta a enfermos de diabetes, produce un incremento en su severidad y mortalidad. Nos referimos, claro est√°, a la covid-19.

La investigación de la interrelación entre ambas enfermedades se hace necesaria y urgente.

*Mar√≠a del Carmen Sanz Miguel, Ana P√©rez Garc√≠a, Elvira √Ālvarez Garc√≠a y Ver√≥nica Hurtado Carneiro forman parte de un equipo de investigaci√≥n de la Universidad Complutense de Madrid.

Nuestros productos para controlar los niveles de glucosa

Fuente de la noticia

Facebook
Twitter
LinkedIn
WhatsApp